
XT3/4 Architecture
and Software

Ramanan Sankaran
Scientific Computing Group

2

“jaguar” is a combination of XT3 and XT4

• Each compute socket has a 2.6GHz dual-core AMD opteron
processor
− 11508 x 2 = 23016 cores

• Memory is 4GB/processor or 2GB/core
− 11508 x 4GB = 45TB

• jaguar’s aggregate peak performance is ~119TF
− 10.4GF per socket

• In addition to compute nodes, there are service nodes for I/O, login
etc.

XT3 XT4 Total
No. of cabinets 56 68 124
No. of compute sockets 5212 6296 11508

3

Cray XT3/4 Architecture

• XT3 is 3rd generation Cray MPP
• Service nodes run Linux
• Compute nodes run Catamount

quintessential kernel (qk)

4

Getting started on jaguar...

• Connecting
− ssh <your_username>@jaguar.ccs.ornl.gov

• File systems
− Home directory is /spin/home/<username>

• Accessible from all NCCS systems
• Regularly backed-up
• Quotas exist. Use lsquota to check usage

− Scratch space is /tmp/work/<username>
• Points to the lustre file system
• Not backed up. Periodically purged

− Files not accessed in more than a week are eligible for
purging

5

Current software environment

• PGI 6.1.6

• gcc 3.3

• Login nodes have kernel 2.6.5

• XT/MPT 1.5.31

• acml 3.6

Customizable through modules

6

modules

• Several software available as modules

• module {list/avail/load/unload}

• module swap worth remembering

• Watch for the occasional information message when
executing module load

% module load netcdf
Usage: ftntest.f90 ${NETCDF_F_LIB} or cc test.c
${NETCDF_C_LIB}

7

What is different under catamount?
• No threading (pthreads or OpenMP)
• No TCP/IP facilities (pipes, sockets or IP messages)
• No popen(), fork(), exec() or system() calls
• No dynamic (shared) libraries. static linking is the only option
• The /proc file-system is not available
• No IPC calls (shared memory shmem, limited signal handling).
• No mmap(), sbrk()
• No profil()
• No etime(), times(), clock()
• Limited ioctl()
• No terminal control
• No unix style deamons supported functions

8

Compilers

• ftn, cc, and CC are very tidy wrappers for catamount compiling &
linking.

• Use the wrappers essentially all the time.
− most of your builds will be cross-compiles for catamount

/opt/xt-pe/1.5.31/bin/snos64/ftn: INFO: catamount target is being used

-target=catamountwill suppress litany of warnings

• -r8 to do ubiquitous scientific computing promotion

• -g to get debugging symbols
− put -g FIRST (it implies -O0)
− -Ktrap=fp to trap floating point exceptions, and thereby actually do

useful debugging

9

Compiler options for optimization

• -fastto optimize
% pgf90 -fast -help

-fast Common optimizations: -O2 -Munroll=c:1 -Mnoframe -Mlre

• Try some vectorization with -fastsse
− Only buys you 1 extra flop/clock for REAL*8, but fewer

instructions are generated

-fastsse == -fast -Mvect=sse-Mscalarsse -Mcache_align-Mflushz

− -Mcache_align: if you don’t use -fastsse to build main,
makes sure arrays are on cache line boundaries

10

Compiler options (cont...)

• Let the compiler unroll small loops
− e.g. -Munroll=c:4 unrolls loops 4 times

• -tp k8-64 explicitly sets optimization for 64-bit
Opteron

• -Mipa=fastenables interprocedural analysis (IPA)
− Equivalent to Mipa=align,arg,const,f90ptr, shape,

globals,localarg,ptr
− It is usually a good thing for C++
− Make sure to put it on the link line too

• -byteswapio for big-endian data format

11

Compiler optimization report

• -Minfo=allemits information, including whether SSE
instructions were generated
− same as -Minfo=inline,ipa,loop,mp

Sample output from compiling with -fastsse -Minfo=all
step_icd2:
205, Generated 4 alternate loops for the inner loop

Generated vector sse code for inner loop
Generated 2 prefetchinstructions for this loop
Generated vector sse code for inner loop
Generated 2 prefetchinstructions for this loop
Generated vector sse code for inner loop
Generated 2 prefetchinstructions for this loop
Generated vector sse code for inner loop
Generated 2 prefetchinstructions for this loop
Generated vector sse code for inner loop
Generated 2 prefetchinstructions for this loop

225, Loop unrolled 4 times

12

Running on jaguar

• Queue management and scheduling is done through
torque and moab
− torque is based on PBS

• A sample job script
#!/bin/csh
#PBS -A XXXYYY
#PBS -N test
#PBS -j oe
#PBS -l walltime=1:00:00,size=1024
#PBS -W depend=afterany:<jobid>
#PBS -l feature=xt4

set_environment_variables_here
executable_part_of_batch_script

csh will be used to interpret the script
A project code is necessary

size is the number of ‘sockets’ requested
Introduce a job dependency (optional)
Choose to run on xt3 or xt4 (optional)

13

Running (cont...)

• By default commands will be executed on the service
nodes

• yod launches applications on compute nodes
yod -size <size> -SN/VN executable

− -SN executes on only one core per socket
− -VN executes on both cores of a socket (default)

#!/bin/csh
#PBS -A XXXYYY
#PBS -N test
#PBS -j oe
#PBS -l walltime=1:00:00,size=1024

...
yod -size 1024 -SN ./a.out
yod -size 2048 -VN ./a.out

csh will be used to interpret the script
A project code is necessary

size is the number of ‘sockets’ requested

Uses all sockets, 1 core per socket
Uses all sockets, both cores per socket

14

yod and small_pages

• -small_pages option to yod

− Opteron TLB provides 512 entries for 4kB pages, or 8
entries for 2MB pages.

− By default, Catamount uses 2MB pages
− This allows 16MB to be mapped in the TLB (vs 2MB for

4kB pages)
− If your code jumps around to more than 8 places in

memory (e.g. you have some sort of gather/scatter
loop), you may want to try -small_pages

15

Useful MPI variables

• You may need to (re)set a couple of MPI environment
variables

• MPICH_UNEX_BUFFER_SIZE - size of buffers for
unexpected receives
− Default = 60M
− >400M?

• MPICH_PTL_OTHER_EVENTS - sets the number of
events in queue to receive “all other” types of
messages (i.e. a lot, e.g. MPI_ALL_TO_ALL)
− Default = 2048
− 4096 works for some codes to go to 5000 procs

16

More MPI variables

• MPICH_PTL_UNEX_EVENTS - number of unexpected
point-to-point messages (MPI_GATHERV)
− Default = 20480
− Experience shows may need to be set to 80000 or

more

• MPICH_RANK_REORDER_METHOD - controls the
assignment of MPI ranks
− Set to 1 for smp-style (0,1;2,3;4,5)
− Set to 2 for folded (0,3;1,4;2,5)
− Set to 3 for custom. You must then create a file in your

run directory named MPICH_RANK_ORDER. This file
is a comma separated (ranges allowed) list of ranks

17

Submitting and monitoring jobs

• Submit a job using qsub <batch_script>

• qstat -ashows the queue status

• qstat -u <username> shows the users’ jobs

• qaltercan change some job characteristics

• The Moab utility showq can be used to view a more
detailed description of the queue
− Shows the state of the job. Active, idle, blocked etc.
− Shows the priority of different jobs in the queue

• checkjob and showstart are other useful Moab
utilities
− Show why a job is blocked, expected start time etc.

18

More monitoring tools

• Watch your job with xtshowmesh or xtshowcabs

• yod may die during start-up or in-between due to
hardware failure
− Can your application restart using checkpoints?
− Have multiple yod in the batch script with sleep in

between
− If one yod crashes, the next yod can start within the

same batch job

• If you should need to kill a yod
− xtps -Y to find out the nid and pid
− xtkill -9 <nid>.<pid> deletes the yod without removing

the job

19

Queue policies
• Two queues : production and debug

− #PBS -q batch or #PBS -q debug in batch script

• ~10% of the machine is reserved for the debug queue
from 10am-10pm, Mon-Fri.
− Only one debug job at a time
− Maximum wall-time of 1 hour

• Batch jobs have time limits depending on job size
< 128 : Max. 4 hours
129 - 2000 : Max 12 hours
> 2000 : Max 24 hours

• Only two jobs per user will be in ‘eligible’ state. Rest
will be in ‘blocked’ state
− Jobs that are running are not counted in the ‘two jobs’.

20

Interactive debugging

• Interactive jobs are useful for debugging
% qsub -I -V -qdebug -A<XXXYYY> -lWalltime=1:00:00,size=32

qsub: waiting for job 9493.jaguar10.ccs.ornl.gov to start

qsub: job 9493.jaguar10.ccs.ornl.gov ready

% cd to_the_right_path

% yod -np 64 -VN ./executable.x

• Totalview is available on jaguar
% totalview yod -np 64 -VN ./executable.x

• Debug queue is to be used for software development,
testing and debugging only

• Do not use it for production work

21

Accounting

• Hours charged = job_size x 2 x walltime
− Jobs are allocated an entire socket and not individual

cores
− A job will be charged for both cores irrespective of

whether one or both cores in a socket are used
− XT3 and XT4, both are charged same

• showusage is useful to track account usage
% showusage
Usage on jaguar:

Project Totals <userid>
Project Allocation Usage Remaining Usage
_________________________|___________________________|_____________
<YourProj> 2000000 | 123456.78 1876543.22 | 1560.80

%

22

Scientific Libraries

• ACML (AMD Core Math Library)
− BLAS, LAPACK, 1-D FFT
− Fast intrinsics and vector intrinsics
− LAPACK timing routines have been hacked
− Has been compiled with -fastsse, so use
-Mcache_align

• Cray LibSci
− ScaLAPACK, BLACS, SuperLU

• acml/3.6 and xt-libsci/1.5.31 are loaded as part of the
default module set

• fftw/2.1.5 and fftw/3.1 are available

23

I/O Libraries

• HDF5
− Parallel and serial versions available as modules

(hdf5/1.6.4_ser& hdf5/1.6.4_par)
− Need to add link and include info to build

• ${HDF5_FLIB}and ${HDF5_CLIB}
• These also point to szip and libz

• netCDF
− netcdf/3.6.0 available as module

ftntest.f90 ${NETCDF_F_LIB} or
cc test.c ${NETCDF_C_LIB}

− Any need for pnetCDF?

• Please let us know what other libraries you need

24

lustre filesystem

	XT3/4 Architecture �and Software
	“jaguar” is a combination of XT3 and XT4
	Cray XT3/4 Architecture
	Getting started on jaguar...
	Current software environment
	modules
	What is different under catamount?
	Compilers
	Compiler options for optimization
	Compiler options (cont...)
	Compiler optimization report
	Running on jaguar
	Running (cont...)
	yod and small_pages
	Useful MPI variables
	More MPI variables
	Submitting and monitoring jobs
	More monitoring tools
	Queue policies
	Interactive debugging
	Accounting
	Scientific Libraries
	I/O Libraries
	lustre filesystem
	lustre partitions
	liblustre
	Striping
	Striping (cont...)
	Other I/O stuff
	IOBUF
	Performance analysis
	Sample output
	MPI profiling
	Sample output
	Hardware performance counters
	Sample output
	More on Profiling
	Job sizes on Jaguar
	More Information

